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Abstract

We propose minimum risk training for
end-to-end neural machine translation.
Unlike conventional maximum likelihood
estimation, minimum risk training is ca-
pable of optimizing model parameters di-
rectly with respect to arbitrary evaluation
metrics, which are not necessarily differ-
entiable. Experiments show that our ap-
proach achieves significant improvements
over maximum likelihood estimation on a
state-of-the-art neural machine translation
system across various languages pairs.
Transparent to architectures, our approach
can be applied to more neural networks
and potentially benefit more NLP tasks.

1 Introduction

Recently, end-to-end neural machine transla-
tion (NMT) (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2015)
has attracted increasing attention from the com-
munity. Providing a new paradigm for machine
translation, NMT aims at training a single, large
neural network that directly transforms a source-
language sentence to a target-language sentence
without explicitly modeling latent structures (e.g.,
word alignment, phrase segmentation, phrase re-
ordering, and SCFG derivation) that are vital in
conventional statistical machine translation (SMT)
(Brown et al., 1993; Koehn et al., 2003; Chiang,
2005).

Current NMT models are based on the encoder-
decoder framework (Cho et al., 2014; Sutskever
et al., 2014), with an encoder to read and encode
a source-language sentence into a vector, from
which a decoder generates a target-language sen-
tence. While early efforts encode the input into a
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fixed-length vector, Bahdanau et al. (2015) advo-
cate the attention mechanism to dynamically gen-
erate a context vector for a target word being gen-
erated.

Although NMT models have achieved results on
par with or better than conventional SMT, they still
suffer from a major drawback: the models are op-
timized to maximize the likelihood of training data
instead of evaluation metrics that actually quantify
translation quality. Ranzato et al. (2015) indicate
two drawbacks of maximum likelihood estimation
(MLE) for NMT. First, the models are only ex-
posed to the training distribution instead of model
predictions. Second, the loss function is defined at
the word level instead of the sentence level.

In this work, we introduce minimum risk train-
ing (MRT) for neural machine translation. The
new training objective is to minimize the expected
loss (i.e., risk) on the training data. MRT has the
following advantages over MLE:

1. Direct optimization with respect to evalu-
ation metrics: MRT introduces evaluation
metrics as loss functions and aims to mini-
mize expected loss on the training data.

2. Applicable to arbitrary loss functions: our
approach allows arbitrary sentence-level loss
functions, which are not necessarily differen-
tiable.

3. Transparent to architectures: MRT does not
assume the specific architectures of NMT and
can be applied to any end-to-end NMT sys-
tems.

While MRT has been widely used in conven-
tional SMT (Och, 2003; Smith and Eisner, 2006;
He and Deng, 2012) and deep learning based MT
(Gao et al., 2014), to the best of our knowledge,
this work is the first effort to introduce MRT
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into end-to-end NMT. Experiments on a variety of
language pairs (Chinese-English, English-French,
and English-German) show that MRT leads to sig-
nificant improvements over MLE on a state-of-
the-art NMT system (Bahdanau et al., 2015).

2 Background

Given a source sentence x = x1, . . . ,xm, . . . ,xM
and a target sentence y = y1, . . . ,yn, . . . ,yN ,
end-to-end NMT directly models the translation
probability:

P (y|x;θ) =

N∏
n=1

P (yn|x,y<n;θ), (1)

where θ is a set of model parameters and y<n =
y1, . . . ,yn−1 is a partial translation.

Predicting the n-th target word can be modeled
by using a recurrent neural network:

P (yn|x,y<n;θ) ∝ exp
{
q(yn−1, zn, cn,θ)

}
, (2)

where zn is the n-th hidden state on the target
side, cn is the context for generating the n-th tar-
get word, and q(·) is a non-linear function. Cur-
rent NMT approaches differ in calculating zn and
cn and defining q(·). Please refer to (Sutskever et
al., 2014; Bahdanau et al., 2015) for more details.

Given a set of training examples D =
{〈x(s),y(s)〉}Ss=1, the standard training objective
is to maximize the log-likelihood of the training
data:

θ̂MLE = argmax
θ

{
L(θ)

}
, (3)

where

L(θ) =
S∑
s=1

logP (y(s)|x(s);θ) (4)

=

S∑
s=1

N(s)∑
n=1

logP (y(s)
n |x(s),y

(s)
<n;θ). (5)

We use N (s) to denote the length of the s-th target
sentence y(s).

The partial derivative with respect to a model
parameter θi is calculated as

∂L(θ)

∂θi
=

S∑
s=1

N(s)∑
n=1

∂P (y
(s)
n |x(s),y

(s)
<n;θ)/∂θi

P (y
(s)
n |x(s),y

(s)
<n;θ)

. (6)

Ranzato et al. (2015) point out that MLE
for end-to-end NMT suffers from two drawbacks.

First, while the models are trained only on the
training data distribution, they are used to generate
target words on previous model predictions, which
can be erroneous, at test time. This is referred to
as exposure bias (Ranzato et al., 2015). Second,
MLE usually uses the cross-entropy loss focus-
ing on word-level errors to maximize the proba-
bility of the next correct word, which might hardly
correlate well with corpus-level and sentence-level
evaluation metrics such as BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006).

As a result, it is important to introduce new
training algorithms for end-to-end NMT to include
model predictions during training and optimize
model parameters directly with respect to evalu-
ation metrics.

3 Minimum Risk Training for Neural
Machine Translation

Minimum risk training (MRT), which aims to
minimize the expected loss on the training data,
has been widely used in conventional SMT (Och,
2003; Smith and Eisner, 2006; He and Deng,
2012) and deep learning based MT (Gao et al.,
2014). The basic idea is to introduce evaluation
metrics as loss functions and assume that the opti-
mal set of model parameters should minimize the
expected loss on the training data.

Let 〈x(s),y(s)〉 be the s-th sentence pair in the
training data and y be a model prediction. We use
a loss function ∆(y,y(s)) to measure the discrep-
ancy between the model prediction y and the gold-
standard translation y(s). Such a loss function
can be negative smoothed sentence-level evalua-
tion metrics such as BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), TER (Snover et al.,
2006), or METEOR (Lavie and Denkowski, 2009)
that have been widely used in machine translation
evaluation. Note that a loss function is not param-
eterized and thus not differentiable.

In MRT, the risk is defined as the expected loss
with respect to the posterior distribution:

R(θ) =
S∑
s=1

Ey|x(s);θ

[
∆(y,y(s))

]
(7)

=
S∑
s=1

∑
y∈Y(x(s))

P (y|x(s);θ)∆(y,y(s)), (8)

where Y(x(s)) is a set of all possible candidate
translations for x(s).



∆(y,y(s)) P (y|x(s);θ)

y1 −1.0 0.2 0.3 0.5 0.7
y2 −0.3 0.5 0.2 0.2 0.1
y3 −0.5 0.3 0.5 0.3 0.2

Ey|x(s);θ[∆(y,y(s))] −0.50 −0.61 −0.71 −0.83

Table 1: Example of minimum risk training. x(s) is an observed source sentence, y(s) is its corresponding
gold-standard translation, and y1, y2, and y3 are model predictions. For simplicity, we suppose that the
full search space contains only three candidates. The loss function ∆(y,y(s)) measures the difference
between model prediction and gold-standard. The goal of MRT is to find a distribution (the last column)
that correlates well with the gold-standard by minimizing the expected loss.

The training objective of MRT is to minimize
the risk on the training data:

θ̂MRT = argmin
θ

{
R(θ)

}
. (9)

Intuitively, while MLE aims to maximize the
likelihood of training data, our training objective is
to discriminate between candidates. For example,
in Table 1, suppose the candidate set Y(x(s)) con-
tains only three candidates: y1, y2, and y3. Ac-
cording to the losses calculated by comparing with
the gold-standard translation y(s), it is clear that
y1 is the best candidate, y3 is the second best, and
y2 is the worst: y1 > y3 > y2. The right half of
Table 1 shows four models. As model 1 (column
3) ranks the candidates in a reverse order as com-
pared with the gold-standard (i.e., y2 > y3 > y1),
it obtains the highest risk of −0.50. Achieving
a better correlation with the gold-standard than
model 1 by predicting y3 > y1 > y2, model 2
(column 4) reduces the risk to −0.61. As model
3 (column 5) ranks the candidates in the same or-
der with the gold-standard, the risk goes down to
−0.71. The risk can be further reduced by con-
centrating the probability mass on y1 (column 6).
As a result, by minimizing the risk on the training
data, we expect to obtain a model that correlates
well with the gold-standard.

In MRT, the partial derivative with respect to a
model parameter θi is given by

∂R(θ)

∂θi

=
S∑
s=1

Ey|x(s);θ

[
∆(y,y(s))×

N(s)∑
n=1

∂P (yn|x(s),y<n;θ)/∂θi

P (yn|x(s),y<n;θ)

]
. (10)

Since Eq. (10) suggests there is no need to dif-
ferentiate ∆(y,y(s)), MRT allows arbitrary non-
differentiable loss functions. In addition, our ap-
proach is transparent to architectures and can be
applied to arbitrary end-to-end NMT models.

Despite these advantages, MRT faces a major
challenge: the expectations in Eq. (10) are usu-
ally intractable to calculate due to the exponential
search space of Y(x(s)), the non-decomposability
of the loss function ∆(y,y(s)), and the context
sensitiveness of NMT.

To alleviate this problem, we propose to only
use a subset of the full search space to approxi-
mate the posterior distribution and introduce a new
training objective:

R̃(θ) =

S∑
s=1

Ey|x(s);θ,α

[
∆(y,y(s))

]
(11)

=
S∑
s=1

∑
y∈S(x(s))

Q(y|x(s);θ, α)∆(y,y(s)), (12)

where S(x(s)) ⊂ Y(x(s)) is a sampled subset of
the full search space, and Q(y|x(s);θ, α) is a dis-
tribution defined on the subspace S(x(s)):

Q(y|x(s);θ, α) =
P (y|x(s);θ)α∑

y′∈S(x(s)) P (y′|x(s);θ)α
. (13)

Note that α is a hyper-parameter that controls the
sharpness of the Q distribution (Och, 2003).

Algorithm 1 shows how to build S(x(s)) by
sampling the full search space. The sampled sub-
set initializes with the gold-standard translation
(line 1). Then, the algorithm keeps sampling a tar-
get word given the source sentence and the partial
translation until reaching the end of sentence (lines
3-16). Note that sampling might produce dupli-
cate candidates, which are removed when building



Input: the s-th source sentence in the training data x(s), the s-th target sentence in the training data y(s), the set of
model parameters θ, the limit on the length of a candidate translation l, and the limit on the size of sampled
space k.

Output: sampled space S(x(s)).

1 S(x(s))← {y(s)}; // the gold-standard translation is included
2 i← 1;
3 while i ≤ k do
4 y← ∅; // an empty candidate translation
5 n← 1;
6 while n ≤ l do
7 y ∼ P (yn|x(s),y<n;θ); // sample the n-th target word
8 y← y ∪ {y};
9 if y = EOS then

10 break; // terminate if reach the end of sentence
11 end
12 n← n+ 1;
13 end
14 S(x(s))← S(x(s)) ∪ {y};
15 i← i+ 1;
16 end

Algorithm 1: Sampling the full search space.

the subspace. We find that it is inefficient to force
the algorithm to generate exactly k distinct candi-
dates because high-probability candidates can be
sampled repeatedly, especially when the probabil-
ity mass highly concentrates on a few candidates.
In practice, we take advantage of GPU’s parallel
architectures to speed up the sampling. 1

Given the sampled space, the partial derivative
with respect to a model parameter θi of R̃(θ) is
given by

∂R̃(θ)

∂θi

= α
S∑
s=1

Ey|x(s);θ,α

[
∂P (y|x(s);θ)/∂θi

P (y|x(s);θ)
×(

∆(y,y(s))−

Ey′|x(s);θ,α[∆(y′,y(s))]
)]
. (14)

Since |S(x(s))| � |Y(x(s))|, the expectations
in Eq. (14) can be efficiently calculated by ex-
plicitly enumerating all candidates in S(x(s)). In
our experiments, we find that approximating the
full space with 100 samples (i.e., k = 100) works
very well and further increasing sample size does
not lead to significant improvements (see Section
4.3).

1To build the subset, an alternative to sampling is com-
puting top-k translations. We prefer sampling to comput-
ing top-k translations for efficiency: sampling is more effi-
cient and easy-to-implement than calculating k-best lists, es-
pecially given the extremely parallel architectures of GPUs.

4 Experiments

4.1 Setup

We evaluated our approach on three transla-
tion tasks: Chinese-English, English-French, and
English-German. The evaluation metric is BLEU
(Papineni et al., 2002) as calculated by the
multi-bleu.perl script.

For Chinese-English, the training data consists
of 2.56M pairs of sentences with 67.5M Chinese
words and 74.8M English words, respectively. We
used the NIST 2006 dataset as the validation set
(hyper-parameter optimization and model selec-
tion) and the NIST 2002, 2003, 2004, 2005, and
2008 datasets as test sets.

For English-French, to compare with the results
reported by previous work on end-to-end NMT
(Sutskever et al., 2014; Bahdanau et al., 2015;
Jean et al., 2015; Luong et al., 2015b), we used
the same subset of the WMT 2014 training cor-
pus that contains 12M sentence pairs with 304M
English words and 348M French words. The con-
catenation of news-test 2012 and news-test 2013
serves as the validation set and news-test 2014 as
the test set.

For English-German, to compare with the
results reported by previous work (Jean et al.,
2015; Luong et al., 2015a), we used the same sub-
set of the WMT 2014 training corpus that contains
4M sentence pairs with 91M English words and
87M German words. The concatenation of news-
test 2012 and news-test 2013 is used as the valida-
tion set and news-test 2014 as the test set.
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Figure 1: Effect of α on the Chinese-English vali-
dation set.

We compare our approach with two state-of-
the-art SMT and NMT systems:

1. MOSES (Koehn and Hoang, 2007): a phrase-
based SMT system using minimum error rate
training (Och, 2003).

2. RNNSEARCH (Bahdanau et al., 2015): an
attention-based NMT system using maxi-
mum likelihood estimation.

MOSES uses the parallel corpus to train a
phrase-based translation model and the target
part to train a 4-gram language model using the
SRILM toolkit (Stolcke, 2002). 2 The log-linear
model Moses uses is trained by the minimum error
rate training (MERT) algorithm (Och, 2003) that
directly optimizes model parameters with respect
to evaluation metrics.

RNNSEARCH uses the parallel corpus to train
an attention-based neural translation model using
the maximum likelihood criterion.

On top of RNNSEARCH, our approach replaces
MLE with MRT. We initialize our model with the
RNNsearch50 model (Bahdanau et al., 2015). We
set the vocabulary size to 30K for Chinese-English
and English-French and 50K for English-German.
The beam size for decoding is 10. The default
loss function is negative smoothed sentence-level
BLEU.

4.2 Effect of α
The hyper-parameter α controls the smoothness of
the Q distribution (see Eq. (13)). As shown in

2It is possible to exploit larger monolingual corpora for
both MOSES and RNNSEARCH (Gulcehre et al., 2015; Sen-
nrich et al., 2015). We leave this for future work.
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Figure 2: Effect of sample size on the Chinese-
English validation set.

criterion loss BLEU TER NIST
MLE N/A 30.48 60.85 8.26

−sBLEU 36.71 53.48 8.90
MRT sTER 30.14 53.83 6.02

−sNIST 32.32 56.85 8.90

Table 2: Effect of loss function on the Chinese-
English validation set.

Figure 1, we find that α has a critical effect on
BLEU scores on the Chinese-English validation
set. While α = 1 × 10−1 deceases BLEU scores
dramatically, α = 5 × 10−3 improves translation
quality significantly and consistently. Reducing
α further to 1 × 10−4, however, results in lower
BLEU scores. Therefore, we set α = 5× 10−3 in
the following experiments.

4.3 Effect of Sample Size

For efficiency, we sample k candidate translations
from the full search space Y(x(s)) to build an
approximate posterior distribution Q (Section 3).
Figure 2 shows the effect of sample size k on
the Chinese-English validation set. It is clear that
BLEU scores consistently rise with the increase of
k. However, we find that a sample size larger than
100 (e.g., k = 200) usually does not lead to signi-
ficant improvements and increases the GPU mem-
ory requirement. Therefore, we set k = 100 in the
following experiments.

4.4 Effect of Loss Function

As our approach is capable of incorporating evalu-
ation metrics as loss functions, we investigate the
effect of different loss functions on BLEU, TER
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Figure 3: Comparison of training time on the
Chinese-English validation set.

and NIST scores on the Chinese-English valida-
tion set. As shown in Table 2, negative smoothed
sentence-level BLEU (i.e, −sBLEU) leads to sta-
tistically significant improvements over MLE (p <
0.01). Note that the loss functions are all defined at
the sentence level while evaluation metrics are cal-
culated at the corpus level. This discrepancy might
explain why optimizing with respect to sTER does
not result in the lowest TER on the validation set.
As −sBLEU consistently improves all evaluation
metrics, we use it as the default loss function in
our experiments.

4.5 Comparison of Training Time
We used a cluster with 20 Telsa K40 GPUs to train
the NMT model. For MLE, it takes the cluster
about one hour to train 20,000 mini-batches, each
of which contains 80 sentences. The training time
for MRT is longer than MLE: 13,000 mini-batches
can be processed in one hour on the same cluster.

Figure 3 shows the learning curves of MLE and
MRT on the validation set. For MLE, the BLEU
score reaches its peak after about 20 hours and
then keeps going down dramatically. Initializing
with the best MLE model, MRT increases BLEU
scores dramatically within about 30 hours. 3 Af-
terwards, the BLEU score keeps improving grad-
ually but there are slight oscillations.

4.6 Results on Chinese-English Translation
4.6.1 Comparison of BLEU Scores
Table 3 shows BLEU scores on Chinese-English
datasets. For RNNSEARCH, we follow Luong

3Although it is possible to initialize with a randomized
model, it takes much longer time to converge.
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test set over various input sentence lengths.
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Figure 5: Comparison of output sentences lengths
on the Chinese-English test set.

et al. (2015b) to handle rare words. We find
that introducing minimum risk training into neu-
ral MT leads to surprisingly substantial improve-
ments over MOSES and RNNSEARCH with MLE
as the training criterion (up to +8.61 and +7.20
BLEU points, respectively) across all test sets. All
the improvements are statistically significant.

4.6.2 Comparison of TER Scores
Table 4 gives TER scores on Chinese-English
datasets. The loss function used in MRT is
−sBLEU. MRT still obtains dramatic improve-
ments over MOSES and RNNSEARCH with MLE
as the training criterion (up to -10.27 and -8.32
TER points, respectively) across all test sets. All
the improvements are statistically significant.

4.6.3 BLEU Scores over Sentence Lengths
Figure 4 shows the BLEU scores of translations
generated by MOSES, RNNSEARCH with MLE,



System Training MT06 MT02 MT03 MT04 MT05 MT08
MOSES MERT 32.74 32.49 32.40 33.38 30.20 25.28

RNNSEARCH
MLE 30.70 35.13 33.73 34.58 31.76 23.57
MRT 37.34 40.36 40.93 41.37 38.81 29.23

Table 3: Case-insensitive BLEU scores on Chinese-English translation.

System Training MT06 MT02 MT03 MT04 MT05 MT08
MOSES MERT 59.22 62.97 62.44 61.20 63.44 62.36

RNNSEARCH
MLE 60.74 58.94 60.10 58.91 61.74 64.52
MRT 52.86 52.87 52.17 51.49 53.42 57.21

Table 4: Case-insensitive TER scores on Chinese-English translation.

MLE vs. MRT
< = >

evaluator 1 54% 24% 22%
evaluator 2 53% 22% 25%

Table 5: Subjective evaluation of MLE and MRT
on Chinese-English translation.

and RNNSEARCH with MRT on the Chinese-
English test set with respect to input sentence
lengths. While MRT consistently improves over
MLE for all lengths, it achieves worse translation
performance for sentences longer than 60 words.

One reason is that RNNSEARCH tends to pro-
duce short translations for long sentences. As
shown in Figure 5, both MLE and MRE gen-
erate much shorter translations than MOSES.
This results from the length limit imposed by
RNNSEARCH for efficiency reasons: a sentence
in the training set is no longer than 50 words. This
limit deteriorates translation performance because
the sentences in the test set are usually longer than
50 words.

4.6.4 Subjective Evaluation

We also conducted a subjective evaluation to vali-
date the benefit of replacing MLE with MRT. Two
human evaluators were asked to compare MLE
and MRT translations of 100 source sentences ran-
domly sampled from the test sets without know-
ing from which system a candidate translation was
generated.

Table 5 shows the results of subjective evalua-
tion. The two human evaluators made close judge-
ments: around 54% of MLE translations are worse
than MRE, 23% are equal, and 23% are better.

4.6.5 Example Translations
Table 6 shows some example translations. We
find that MOSES translates a Chinese string “yi
wei fuze yu pingrang dangju da jiaodao de qian
guowuyuan guanyuan” that requires long-distance
reordering in a wrong way, which is a notorious
challenge for statistical machine translation. In
contrast, RNNSEARCH-MLE seems to overcome
this problem in this example thanks to the capa-
bility of gated RNNs to capture long-distance de-
pendencies. However, as MLE uses a loss func-
tion defined only at the word level, its translation
lacks sentence-level consistency: “chinese” oc-
curs twice while “two senate” is missing. By opti-
mizing model parameters directly with respect to
sentence-level BLEU, RNNSEARCH-MRT seems
to be able to generate translations more consis-
tently at the sentence level.

4.7 Results on English-French Translation
Table 7 shows the results on English-French trans-
lation. We list existing end-to-end NMT systems
that are comparable to our system. All these sys-
tems use the same subset of the WMT 2014 train-
ing corpus and adopt MLE as the training crite-
rion. They differ in network architectures and vo-
cabulary sizes. Our RNNSEARCH-MLE system
achieves a BLEU score comparable to that of Jean
et al. (2015). RNNSEARCH-MRT achieves the
highest BLEU score in this setting even with a vo-
cabulary size smaller than Luong et al. (2015b)
and Sutskever et al. (2014). Note that our ap-
proach does not assume specific architectures and
can in principle be applied to any NMT systems.

4.8 Results on English-German Translation
Table 8 shows the results on English-German
translation. Our approach still significantly out-



Source meiguo daibiao tuan baokuo laizi shidanfu daxue de yi wei zhongguo
zhuanjia , liang ming canyuan waijiao zhengce zhuli yiji yi wei fuze yu
pingrang dangju da jiaodao de qian guowuyuan guanyuan .

Reference the us delegation consists of a chinese expert from the stanford university
, two senate foreign affairs policy assistants and a former state department
official who was in charge of dealing with pyongyang authority .

MOSES the united states to members of the delegation include representatives from
the stanford university , a chinese expert , two assistant senate foreign policy
and a responsible for dealing with pyongyang before the officials of the state
council .

RNNSEARCH-MLE the us delegation comprises a chinese expert from stanford university , a
chinese foreign office assistant policy assistant and a former official who is
responsible for dealing with the pyongyang authorities .

RNNSEARCH-MRT the us delegation included a chinese expert from the stanford university ,
two senate foreign policy assistants , and a former state department official
who had dealings with the pyongyang authorities .

Table 6: Example Chinese-English translations. “Source” is a romanized Chinese sentence, “Refer-
ence” is a gold-standard translation. “MOSES” and “RNNSEARCH-MLE” are baseline SMT and NMT
systems. “RNNSEARCH-MRT” is our system.

System Architecture Training Vocab BLEU
Existing end-to-end NMT systems

Bahdanau et al. (2015) gated RNN with search

MLE

30K 28.45
Jean et al. (2015) gated RNN with search 30K 29.97
Jean et al. (2015) gated RNN with search + PosUnk 30K 33.08
Luong et al. (2015b) LSTM with 4 layers 40K 29.50
Luong et al. (2015b) LSTM with 4 layers + PosUnk 40K 31.80
Luong et al. (2015b) LSTM with 6 layers 40K 30.40
Luong et al. (2015b) LSTM with 6 layers + PosUnk 40K 32.70
Sutskever et al. (2014) LSTM with 4 layers 80K 30.59

Our end-to-end NMT systems

this work
gated RNN with search MLE 30K 29.88
gated RNN with search MRT 30K 31.30
gated RNN with search + PosUnk MRT 30K 34.23

Table 7: Comparison with previous work on English-French translation. The BLEU scores are case-
sensitive. “PosUnk” denotes Luong et al. (2015b)’s technique of handling rare words.

System Architecture Training BLEU
Existing end-to-end NMT systems

Jean et al. (2015) gated RNN with search

MLE

16.46
Jean et al. (2015) gated RNN with search + PosUnk 18.97
Jean et al. (2015) gated RNN with search + LV + PosUnk 19.40
Luong et al. (2015a) LSTM with 4 layers + dropout + local att. + PosUnk 20.90

Our end-to-end NMT systems

this work
gated RNN with search MLE 16.45
gated RNN with search MRT 18.02
gated RNN with search + PosUnk MRT 20.45

Table 8: Comparison with previous work on English-German translation. The BLEU scores are case-
sensitive.



performs MLE and achieves comparable results
with state-of-the-art systems even though Luong
et al. (2015a) used a much deeper neural network.
We believe that our work can be applied to their
architecture easily.

Despite these significant improvements, the
margins on English-German and English-French
datasets are much smaller than Chinese-English.
We conjecture that there are two possible rea-
sons. First, the Chinese-English datasets contain
four reference translations for each sentence while
both English-French and English-German datasets
only have single references. Second, Chinese and
English are more distantly related than English,
French and German and thus benefit more from
MRT that incorporates evaluation metrics into op-
timization to capture structural divergence.

5 Related Work

Our work originated from the minimum risk train-
ing algorithms in conventional statistical machine
translation (Och, 2003; Smith and Eisner, 2006;
He and Deng, 2012). Och (2003) describes a
smoothed error count to allow calculating gradi-
ents, which directly inspires us to use a param-
eter α to adjust the smoothness of the objective
function. As neural networks are non-linear, our
approach has to minimize the expected loss on
the sentence level rather than the loss of 1-best
translations on the corpus level. Smith and Eis-
ner (2006) introduce minimum risk annealing for
training log-linear models that is capable of grad-
ually annealing to focus on the 1-best hypothe-
sis. He et al. (2012) apply minimum risk training
to learning phrase translation probabilities. Gao
et al. (2014) leverage MRT for learning continu-
ous phrase representations for statistical machine
translation. The difference is that they use MRT
to optimize a sub-model of SMT while we are in-
terested in directly optimizing end-to-end neural
translation models.

The Mixed Incremental Cross-Entropy Rein-
force (MIXER) algorithm (Ranzato et al., 2015)
is in spirit closest to our work. Building on
the REINFORCE algorithm proposed by Williams
(1992), MIXER allows incremental learning and
the use of hybrid loss function that combines both
REINFORCE and cross-entropy. The major dif-
ference is that Ranzato et al. (2015) leverage rein-
forcement learning while our work resorts to mini-
mum risk training. In addition, MIXER only sam-

ples one candidate to calculate reinforcement re-
ward while MRT generates multiple samples to
calculate the expected risk. Figure 2 indicates that
multiple samples potentially increases MRT’s ca-
pability of discriminating between diverse candi-
dates and thus benefit translation quality. Our ex-
periments confirm Ranzato et al. (2015)’s finding
that taking evaluation metrics into account when
optimizing model parameters does help to improve
sentence-level text generation.

More recently, our approach has been suc-
cessfully applied to summarization (Ayana et al.,
2016). They optimize neural networks for head-
line generation with respect to ROUGE (Lin,
2004) and also achieve significant improvements,
confirming the effectiveness and applicability of
our approach.

6 Conclusion

In this paper, we have presented a framework for
minimum risk training in end-to-end neural ma-
chine translation. The basic idea is to minimize
the expected loss in terms of evaluation metrics
on the training data. We sample the full search
space to approximate the posterior distribution to
improve efficiency. Experiments show that MRT
leads to significant improvements over maximum
likelihood estimation for neural machine trans-
lation, especially for distantly-related languages
such as Chinese and English.

In the future, we plan to test our approach on
more language pairs and more end-to-end neural
MT systems. It is also interesting to extend mini-
mum risk training to minimum risk annealing fol-
lowing Smith and Eisner (2006). As our approach
is transparent to loss functions and architectures,
we believe that it will also benefit more end-to-end
neural architectures for other NLP tasks.
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